Dear Erich,

these are my comments to the manuscript version 44. Comments are under the screenshot.

B. Ahn, M.G. Alves, D.A. Beard, D. Ben-Shachar, D. Bishop, S. Breton, G.C. Brown, R.A. Brown, G.R. Buettner, A. Bumsoo, Z. Cervincova, A.J. Chicco, P.M. Coen, J.L. Collins, L. Z. Cervinkova

Page 1: wrong spelling

powerhouses of the cell contain the coenzyme ubiquinone and cytochrome b, c, aa3 redox sys-

tems, and ATP synthase or alternative oxidases, ion transporters including proton pumps, mi-Page 6: delete and

1. Introduction

Every study of mitochondrial function and disease is faced with Evolution, Age, Gender

and sex, Lifestyle, and Environment (EAGLE) as essential background conditions characteriz-Page 4: delete and sex

dria are largely maintained. The plasma membrane separates the cytosol, nucleus and organelles

(the intracellular compartment) from the environment of the cell. The plasma membrane con-

Page 9: delete of the cell.

Reprogramming mitochondrial pathways may be considered as a switch of gears (stoichiome-

try) rather than uncoupling (loosening the stoichiometry).

Page 11: add of

Until page 25 – all definitions are clear, the manuscript is readable and understandable.

The understandability is difficult from page 26, the real problem to understand starts for me on page 28. The Table 5 and explanations in Table 5 legend are confusing.

Table 5. Power, exergy	, force, flow,	, and advancement.
------------------------	----------------	--------------------

Expression	Symbol Definition	Unit Notes
Power Force, isomorphic	$P_{tr} \qquad P_{tr} = I_{tr} \cdot F_{tr} = \partial_{tr} G \cdot \partial t$ $F_{tr} \qquad F_{tr} = \hat{Q} G \cdot \partial_{tr} \xi^{-1}$	$ W=J \cdot s^{-1} \qquad Eq. \ 4 \\ J \cdot X^{-1} \qquad Eq. \ 5 $

Eq. 5: $\partial_{tr}G[J]$ is the partial Gibbs energy change (exergy) in the advancement of transformation tr

Page 28: add consistency to table Eq. 5 and explanation Eq. 5 (tr)

Number-concentration, C_{NX} : The experimental *number concentration* of sample in the case of cells or animals, *e.g.*, nematodes is $C_{NX}=N_X/V$ [X·L⁻¹], where N_X is the number of cells or organisms in the chamber (**Table 6**).

Flow per sample entity, $I_{X,02}$: A special case of normalization is encountered in respiratory studies with permeabilized (or intact) cells. If respiration is expressed per cell, the O₂ flow per measurement system is replaced by the O₂ flow per cell, $I_{cell,O2}$ (**Table 6**). O₂ flow can be calculated from volume-specific O₂ flux, $J_{V,O2}$ [nmol·s⁻¹·L⁻¹] (per V of the measurement chamber [L]), divided by the number concentration of cells, $C_{Nce}=N_{ce}/V$ [cell·L⁻¹], where N_{ce} is the

Page 38: The term number concentration is very strange. Cell number concentration is more understandable. But anyway - it is just concentration of cells in the chamber.

Expression of respiration in amol.s⁻¹.cell⁻¹ looks fine for me.